
Cshrc and Login Files

Overview

The C Shell, csh, uses several configuration files. When it first starts up, it performs the
commands in the file ~/.cshrc (remember that ~ is your home directory). If it is a login
shell1 then it reads the systemwide configuration file /etc/.login, then ~/.login and finally
~/.logout when you logout.

Opinions vary about what should go in each of these files. Normally, you should use
.login to setup your terminal and .cshrc for other settings. Since .cshrc gets run even
for noninteractive shells, it shouldn’t print anything to the screen, or make settings that will
cause trouble for shells scripts. We’ll see that one way to handle this is to test if the shell is
being used interactively, and do different things accordingly.

In the math department, the systemwide file checks your disk quota, establishes default
values for your terminal type, prints the message of the day, and tells you if you have mail.

First, we’ll look at some simple example files. Then, we’ll talk about other settings/options,
and give some examples of other things you can have in these files. Finally, we’ll look at the
default setup for the Berkeley math department, and an example of another set of files for
use here.

• Before you start, read the csh man page, to learn about the shell’s syntax, built-in
commands, and predefined shell variables and what they configure.

• Note that the exact contents of files will depend not only on your preferences, but on
the particular version of Unix and system configuration.

• I did reformat some things a bit to make them fit, splitting long lines with backslashes.
Everything should still work, but if you have trouble, convert them back.

• Both ^[and ^G are control characters. Generally, you can insert them into a file by
typing control-V and then the control character you want.

• Some people start a windowing system from their ~/.login, but I think this leads to
more trouble than it’s worth. As our Suns become converted to Solaris with graphical
logins, it’s pointless anyway.

• See http://www.perl.com/perl/versus/csh.whynot to understand why you shouldn’t
attempt complicated shell scripts in csh.

— Thomas Insel, April 1999

1Login shells show up in your ps listing with names that begin with a -, and are typically the ones that
you type into, not ones that run shell scripts, etc.

Not all interactive shells are login shells, and it’s complicated to explain how you get each type. If you
telnet or rlogin interactively, you should get a login shell. If you run xterm -ls you will get a login shell,
but normally when you open a shell window or give an rsh command, it isn’t a login shell.

1

Simple .cshrc

First, we make settings for all shells. Note that csh ensures that the shell variable path is kept
in synch with the environment variable PATH. It does the same for home/HOME, term/TERM, and
user/USER. We set environment variables: EDITOR and PAGER are used by many programs,
EXINIT configures ex and vi, MORE configures more. See the appropriate man pages for more
information. The umask means that group and other get no permissions by default. Setting
noclobber ensures that redirection won’t erase existing files.

Then, we exit if not interactive, so that we don’t bother with aliases and such for shell
scripts and rsh sessions. Also, .cshrc mustn’t write to the screen in these circumstances.

Finally come settings for interactive shells. We tell the shell to check for new mail every
minute. Note how we seperate the first word of the hostname when setting the prompt.

umask 077

limit coredumpsize 0

set path = (/bin /usr/bin /usr/local/bin $HOME/bin)

set noclobber

setenv EDITOR vi

setenv PAGER less

setenv EXINIT ’set ai showmatch’

setenv MORE -d

if (! $?prompt) exit 0 # --- quit if not interactive.

mesg y

set mail = (60 /var/mail/$USER)

unset ignoreeof

set hostname = ‘hostname | sed -e ’s/\..*//’‘

set prompt = "${user}@${hostname} \!% "

alias rm ’rm -i’

alias cp ’cp -i’

alias mv ’mv -i’

2

Simple .login

This sets up terminal characteristics:

1. Use set noglob to turn off wildcard matching, so that ? doesn’t cause trouble.

2. Run tset. It first tries to determine the terminal type. The base value is a function of
how you connect (see /etc/ttytab). Then, it applys substitutions specified with the
-m arguments, prompting the user if appropriate. Finally, tset initializes the terminal,
and sets the TERM and TERMCAP environment variables. You should read the man page.

3. Turn wildcards back on.

4. Use stty to set terminal options. Here, we tell it to use the default settings for a CRT
(as opposed to a Teletype, I guess) and to expand tabs to spaces.

5. Optionally, the end of this file would be a good place to put informative commands
that you’d like to run when you log in, perhaps uptime or users to see how busy the
system is.

set noglob

eval ‘tset -s -mannex:vt100 -mcon80x25:vt100 -mnetwork:?$term‘

unset noglob

stty crt -tabs

3

Shell Variables

The shell has many predefined shell variables. Some contain useful information. Others
control the shells behavior. We’ll talk about these now. Use the set to see the current
settings. See the csh man page for more information. Lists should begin and end with
parentheses and are seperated by spaces.

cdpath — a list of directories to be searched by cd, chdir, pushd commands if
their argument doesn’t match a subdirectory of the current directory.

echo — if set, echo commands just before executing them. Use this for debug-
ging, or to see how wildcards expand.

filec — if set, enable filename completion with control-D (lists available comple-
tions) and ESC (completes as much as possible uniquely).
fignore – a list of filenames to ignore when attempting filename completion.
nobeep – if set, don’t beep for ambiguous filename completion attempts.

histchars – set to a string of two characters. The first replaces ! for history
commands and the second replaces ^ for quick substitutions.

history — how many lines of past commands to remember.
savehist — how many lines of history to save to disk.

ignoreeof — if set, you can’t use control-D to exit or logout.
mail — a list of files to check for mail. If the first word is a number, how often

to check (in seconds).
noclobber — if set, redirection with > won’t erase an existing file.
noglob — if set, don’t expand wildcards.
notify — if set, the shell will notify immediately when a job finishes. Otherwise,

only when printing a prompt.
path — list of directories to search for commands.
prompt — essentially, csh sets this to % for interactive shells and leaves it unset

(i.e., $?prompt == 0) if the shell is noninteractive. You can set it to your
favorite string, noting that a ! will be replaced by the current command
number.

time — controls if and how the shell reports time and memory useage when
running programs. See the man page.

verbose — echo commands after history substitution.

4

Stuff

Other things you might want to set:

• Use the mesg command to control whether other users can write to your terminal via
write, send talk requests, etc. Use mesg y to enable this and mesg n to disable it.

• Use biff y in your .login if you want to be notified of new mail immediately, not
just when waiting at a shell prompt.

• Solaris and Linux supports non-English languages, which can be controlled via the
LANG environment variable. It’s not supported by everything, and you’ll need to work
out some character set issues, but try:

setenv LANG es; date

• If you set TZ to a time zone abbreviation (e.g. CDT or GMT+3), the system will report
the time in that area, instead of local time.

• TERM, TERMCAP, TERMPATH,

• Use the limit builtin command to limit resource usage (to guard against runaway
programs, etc.). The defaults are something like:

limit cputime unlimited

limit filesize unlimited

limit datasize 2097148 kbytes

limit stacksize 8192 kbytes

limit coredumpsize 0 kbytes

limit descriptors 64

limit memorysize unlimited

• Call umask with a three-digit octal number to set the user file-creation mode mask.
There is one digit each for the user, group, and others. Each digit is the sum of the
read (4), write (2) and execute (1) permissions that should not be allowed in newly
created files.

• The environment variable PRINTER is used by lpr and lpq and can be set to something
like hp1.

• Use stty to make terminal settings (can change the size manually if necessary, set
backspace/erase, and so on).

• Aliases are mostly for convenience, and because shell scripts can’t modify variables in
the parent shell’s environment. Define aliases like:

alias x ’\!*’

5

where the \!* gets replaced by the commands arguments. An alias can call other
aliases, but not itself.

To see all current aliases type alias. There’s an unalias command, too.

6

Tricks

If you want to have the current directory in your prompt try (or see tcsh):

alias np set prompt=’${user}@${hostname}:${cwd}%\ ’

np

alias cd chdir \!:* \; np

alias pd pushd \!:* \; np

alias pp popd \!:* \; np

Here’s how you can check for a particular machine or operating system (note also how we
add a directory to the end of the existing path):

set arch = ‘arch‘

if ($arch == sun4 && ‘uname -r‘ =~ 4.*) then

SunOS on Sparc

set path = ($path $HOME/sunos-bin)

else if ($arch == sun4 && ‘uname -r‘ =~ 5.*) then

Solaris on Sparc

set path = ($path $HOME/solaris-bin)

else if ($arch =~ i*86 ‘uname‘ == Linux) then

Linux on Intel

set path = ($path $HOME/linux-bin)

endif

unset arch

Adapted from std.login, to tell people that finger you where you last logged in:

echo Last logged in to ‘hostname‘ at ‘date "+%r %a %D"‘ > .plan

Some things don’t need to be set each shell. For example, environment variables are inherited
so they need only be set once. However, they can’t just be put in .login, since they should
be set for nonlogin or even noninteractive shells. A technique to deal with this, adapted
from the math department setup, is to use something like:

if (! $?ONCEONLY) then

setenv ONCEONLY 1

setenv MANPATH /usr/local/man:/usr/man:/usr/share/man

endif

7

Berkeley Files

Here, we describe the behavior of the files attached in the Appendix, which are attached at
the end, and are current as of April 5, 1999.

Note that std.cshrc, std.login, and std.logout are meant to be included from your
.cshrc, .login, and .logout files, not stand on their own. The idea is that the system staff
can change these files as software is installed or the system is reconfigured, and everything
should work transparently to us.

.cshrc

Essentially, this file sources std.cshrc, which does:

• Initializes environment variables including HELPPOOL, MANPATH, NNTPSERVER, ORGANIZATION,
MORE, LD_OPTIONS, TERMINFO, MacalayPath, and XKEYSYMDB. (THESE NEED EX-
PLAINING.)

• Sets basic csh settings: noclobber, command history, filename completeing, mail
checking, limit and umask.

• Sets the path based on machine and operating system.

• Sets your prompt.

• Sets aliases: ts, matlab, math, and x.

The .cshrc also creates aliases for logout, and aliases rm, cp, and mv to not delete files
without asking you first. It sets up a back command that you can use to undo the most
recent cd. Finally, it changes the titlebar of your window if you’re using SunView (you
aren’t).

Note that std.cshrc exits halfway through if the shell is not interactive, anything that
comes after the “source /usr/local/lib/std.cshrc” line of your .cshrc will not be ex-
ecuted for noninteractive shells.

.login

All but one line is commented out, and that line sources std.login, which does:

• Works around some bugs in the terminal database and then runs tset to setup the
terminal.

• Sets the titlebar of your window if appropriate.

• Executes a .reminder file if it exists (this is used to make sure you set your username
at first login, for example).

• Tries to set your DISPLAY (but messes up if you’ve connected from a Sun 3/50 running
as an X Terminal).

8

Of the other options offered in .login that we haven’t already discussed, a few don’t
seem to be used on our computers (so don’t bother setting them). You don’t need to set
XENVIRONMENT, since std.xinitrc will read ~/.Xdefaults automatically if it exists, and
you don’t need to set anything to do with NeWS or SunView.

.logout

Sources std.logout, which deletes some unneeded files in your home directory: TEX logs,
DVI files, and backup files ending in ~. This was useful a few years ago when our disk quotas
were orders of magnitude smaller.

Linux

As of this writing, the Linux computers (e.g. koebe.math) are configured differently –
std.cshrc is a link to /etc/csh.cshrc which tcsh sources automatically, and there is no
std.login. To work around this, you can add a simple test to your .login and .cshrc

files:

if (‘uname -s‘ == Linux) then

do whatever needs doing.

else

source /usr/local/lib/std.login

endif

I expect that this will change as Intel machines running Linux become more supported
on the department network.

9

Example Berkeley Files

∼tinsel/.cshrc

source /usr/local/lib/std.cshrc

setenv PAGER less

setenv EXINIT ’set ai nomagic tabstop=8 wrapmargin=10 showmatch’

unset ignoreeof

if ($?tcsh) then

set rmstar correct=cmd

set prompt="%n@%m:%c4> " prompt3="$prompt%R (y|n|e)?"

else

set prompt="$user@$hostname% "

endif

alias jaka ’ssh2 jaka.ece.uiuc.edu’

∼tinsel/.login

if ($TERM == annex) setenv TERM vt100

if ($TERM == con80x25) setenv TERM vt100

if ($TERM == vs100) setenv TERM xterm

if ($TERM == network) setenv TERM vt100

if ($TERM == linux && ‘uname‘ != Linux) setenv TERM vt100

source /usr/local/lib/std.login

∼tinsel/.logout

I don’t have one, because I’m tired of all my DVI files disappearing when I close a window.

10

tcsh

The tcsh shell is essentially compatible with csh but adds many extra features. The manual
page is essential reading, but I’ll summarize some of what you can do.

• Command line editing when edit is set. Use left/right arrows to edit, and up/down
arrows to scroll through your history. Full vi, emacs, and customizable key bindings
are available through the bindkey command.

• Command line completion with control-D and TAB. Highly customizable through many
shell variables, and the complete command (e.g., you can have ftp and telnet telnet
complete from a list of computers you usually connect to, etc.).

• Spelling correction for commands and/or filenames. Set correct to cmd or to complete.

• Special aliases: beepcmd, cwdcmd, periodic, precmd that can run when the shell wants
to beep the bell, when the current directory changes, every tperiod minutes, or before
each prompt. Also, can have autologout for idle shells, and look for other users
automatically with the watch and who variables. The sched builtin command allows
you to schedule programs to run in the future (but only while you’re logged in).

• More options for customizing your prompt. I like to see my username, computer, and
directory, so I use:

set prompt="%n@%m:%c4> "

• Supports localization, allows 8-bit filenames and Kanji if your OS supports them.

• Improved terminal management.

If you may use both csh and tcsh and want to use one .cshrc to configure both (instead
of a .tcshrc and a .cshrc), you can test which shell is running with

if ($?tcsh) then

echo "I am tcsh."

else

echo "I am csh."

endif

Since xterm supports a special character sequence to change the titlebar, I use the following
code with tcsh to remind me which window is which:

if ($TERM == xterm || $TERM == sun && "‘tty‘" != /dev/console) then

alias precmd "echo -n ’^[]0;${user}@${hostname}^G’"

endif

11

Appendix: Berkeley File Listings

.cshrc

###

#

This is the standard .cshrc file. See also /.cshrc and "help dotlogin"

It is read in once after the .cshrc file when you log in, and it is

also read every time you open a Sheltool or CMDTool under Suntools.

#

###

Source the standard .login file - Do not edit the next line, unless

you really know what are you doing.

source /usr/local/lib/std.cshrc

This sets your terminals if you have a fixed one. Take the # outs and

set them the way you need:

#set dialterm = vt100

#set plugterm = wy60

#set fastswitch = wy60

#set switch1200 = vt100

#set switch2400 = vt100

#set cdpath = (/your favorites dir here,second favorite,etc)

This sets up lots of useful aliases.

#

Executes some dangerous commands in interactive mode.

alias cp cp -i

alias mv mv -i

alias rm rm -i

Log out any way you want:

alias bye logout

alias adios logout

alias logoff logout

alias quit logout

#Directory forward and back

alias cd ’set olddir=‘pwd‘; chdir \!*;’

alias back ’set back=${olddir}; cd ${back}; unset back;’

#Window headers

12

if ($?TERM) then

if ($TERM == sun && "‘tty‘" != /dev/console) then

alias header echo -n "^[]l $hostname "’${cwd}’’^[\\’

alias lheader echo -n "^[]L $hostname "’^[\\’

lheader

header

alias cd ’set olddir=‘pwd‘; chdir \!*; header’

endif

endif

.login

##

#

This is the standard .login file. See also /.login and "help dotlogin"

It is read in once after the .cshrc file when you log in. It is NOT read

when you open a Sheltool or CMDTool under Suntools.

#

##

source the standard .login file - Do not edit the next line, unless

you really know what are you doing.

source /usr/local/lib/std.login

The next few lines set a few personall stuff for your account. Edit it

to your taste, and remove the # character from the line. They set the

prompt, editor, environment for X11, your name, ...

Set your prompt here and in .cshrc if you want it in a different way:

#set prompt = "$hostname >"

Uncoment this line out if you want your editor to be Emacs (default is VI)

#setenv EDITOR emacs

Uncomment the next line only if you have your own X setup.

#setenv XENVIRONMENT ~/.Xdefaults

Write your name in the next line and uncomment it out.

#setenv NAME "John Q. Public"

Uncomment the following line if you want a specific printer

#setenv PRINTER lw0

#setenv LESS QpmPmFoP

#setenv RNINIT -e -h +hfrom +horganization +hdate -hdate-received \

+hsummary +hsubject

#setenv NEWSSERVER used by Mathematica under NeWS.

#setenv WINDOW_PARENT Used by Mathematica in Sun View.

13

#setenv SUNPSFONT Used by Mathematica to find Screen font under SunView.

#setenv XPSFONT Used by Mathematica to find Screen font under X windows.

That will have to wait until we compile the Emacs with the right support

for Suntools.

This next one is important for people using DSTOOL:

#setenv LD_LIBRARY_PATH $OPENWINHOME/lib

Use the variable below to set a specific font-path for "xdvi".

#setenv XDVIFONTS /vol/moby/moby_a/tex82/common/fonts/%p_lw

Uncomment this line if you want to use SUN terminfo (default is customized)

#setenv TERMINFO /usr/share/lib/terminfo

This next line extends the search path for TEXINPUTS files. The position

of the $TEXINPUTS is absolutely essential, do not change it.

#setenv TEXINPUTS $TEXINPUTS":"$HOME/text/tex

Set this one to your favorite .defaults file under SunView:

#setenv DEFAULTS_FILE /usr/local/lib/menus/defaults

.logout

source the standard .logout file

source /usr/local/lib/std.logout

std.cshrc

###

#

This is the standard .cshrc file. See also /.cshrc and "help dotlogin"

It is read in once BEFORE the .login file when you log in, and it is

also read every time you open a Sheltool or CMDTool under Suntools.

#

###

if (! $?ONCEONLY) then

#

This section of the .cshrc file does things we only want done

once, but want done even if there was no login (e.g. via rsh).

#

setenv ONCEONLY 1

setenv EXINIT ’set showmatch’

setenv HELPPOOL /usr/local/help/ccs/cat:/usr/local/help/math/cat

setenv MANPATH /usr/local/links/man:/usr/local/misc/man:\

/usr/local/x11/man:/usr/man:/usr/lang/man:/usr/openwin/man:\

/usr/share/man/ccs

setenv NNTPSERVER agate

14

setenv VAXIMA /usr/lib/mac

setenv ORGANIZATION "U.C. Berkeley Math. Department."

setenv PAGER more

setenv MORE -c

setenv LD_OPTIONS -L/usr/lang/SC0.0

setenv TERMINFO /usr/local/misc/etc/terminfo

setenv MacaulayPath .:/usr/local/Macaulay/scripts/scriptsde:\

/usr/local/Macaulay/scripts/scriptsmj:\

/usr/local/Macaulay/scripts/scriptsms:/usr/local/Macaulay/source/

setenv EDITOR vi

#setenv EDITOR emacs

#setenv TEXEDIT ’emacs-19 +%d %s’

setenv EMACSTOOL /usr/unsupported/bin/emacs

setenv OPENWINHOME /usr/openwin

setenv DSTOOL /usr/local/dstool

setenv DSTOOL_COLOR_DIR /usr/local/dstool/colormaps

setenv DSTOOL_DATA_DIR /usr/local/dstool/data

Needed for various X applications (e.g. xemacs):

setenv XKEYSYMDB /usr/local/x11/lib/X11/XKeysymDB

endif

Set things which are useful to everybody:

#

set noclobber # To avoid accidentally overwriting a file by redirection.

set ignoreeof # The end of file (^D) doesn’t cause logout.

set history=100

set savehist=$history

set filec

set fignore = (.o .out .arc .bak .dvi .aux .bbl .blg .lof .log \

.lot .idx .ilg .ind .toc .ps)

set mail = (2 /usr/spool/mail/$USER)

limit coredumpsize 0

limit core 0

umask 077

The beginning of all PATH individially for each machine:

/bin got to be in here because the NeXT’s keep several important commands

like sed, hostname, next, ... are all in /bin on the NeXT.

15

set common_path = (~/bin \

/usr/{ucb,bin} /bin \

/usr/local/ssh/bin \

/usr/local/ssh2/bin \

/usr/local/opie/bin \

/usr/local/misc/bin \

/usr/local/links/bin \

/usr/local/bin \

/usr/unsupported/bin)

set arch = ‘arch‘

Sun 4’s running SUN OS:

if ($arch =~ sun4 && ‘uname -r‘ =~ 4.*) then

set path = ($common_path \

/usr/{lang,hosts,games} \

/usr/X11/bin \

/moby/{gnu,micro,misc,mtools,x11r6}/bin \

/moby/sun_answerbook_1.5/bin \

.)

Sun Sparc running Solaris 2.5:

else if ($arch =~ sun* && ‘uname -r‘ =~ 5.*) then

set path = (/usr/local/SUNWspro/bin \

/usr/local/bin \

/usr/ccs/bin \

/usr/openwin/bin \

/usr/local/x11/bin \

$common_path \

/usr/{lang,hosts,games} \

/usr/local/mtools/bin \

.)

Linux:

else if ($arch == i686) then

set path = ($common_path \

/usr/X11/bin \

.)

else

set path = ($common_path \

16

.)

endif

unset common_path

#

If invocation is non_interactive, skip the rest of the .cshrc

#

if ($user == 0 || ! ${?term}) exit

set hostname = ‘hostname | sed -e ’s/\..*//’‘

set prompt = "$hostname \!->"

This sets up lots of useful aliases.

#

alias ts ’set noglob; eval ‘tset -s \!*‘; unset noglob’

Sets the alias for Matlab depending on the machine you are on:

if ($arch =~ sun4 && ‘uname -r‘ =~ 4.*) alias matlab echo "Matlab is \\

available only on Solaris machines, please use the ones in room 708."

Sets the alias for Mathematica depending on the machine you are on:

if ($arch =~ sun* && ‘uname -r‘ =~ 4.*) alias math echo "\\

MATHEMATICA version 3 is available on Solaris-2 machines only.\\

"

alias mathematica math

alias mathem math

alias top top -I

alias phone "finger \!:1@berkeley.edu | sed ’s/Community Profile Database//’"

These next aliases are useful only if you log on from the CONSOLE.

if ("‘tty‘" != "/dev/console") exit

alias x x11

alias X x11

alias startx x11

alias xstart x11

alias x11 \

’xinit ‘if (! -e ~/.xinitrc) echo /usr/local/misc/lib/std.xinitrc‘ \

$hostname;kbd_mode -a;clear’

alias x11color \

17

’xinit ‘if (! -e ~/.xinitrc) echo /usr/local/misc/lib/std.xinitrc‘ \

$hostname -- /usr/X11/bin/Xsun;kbd_mode -a;clear’

if (‘constype‘ == gx) alias x11 x11color

alias o openwin

alias openwin /usr/openwin/bin/openwin

std.login

###

#

This is the standard .login file. It is read by a "login" c-shell

after the .cshrc file when you log in. It is NOT read when you open

a shell "window" or "rsh" a command. See also "help dotlogin".

#

NOTE WELL: This file is for things peculiar to the act of logging in

interactively. If you want to do something only once, such as setting#

an environment variable, put it in the ONCEONLY section of the .cshrc.#

#

###

One of the primary functions of the .login is to "condition" your terminal

by doing a "tset". Here we also try to work around a couple of Solaris-2

bugs: there is no dtterm termcap entry and the xterm init sequence

does a clear-screen.

#

if (! $?term) set term=‘tset -‘ # Make sure "term" defined

set oterm="$term"

switch ("$term")

case xterm:

set t="/usr/local/misc/lib/termcap"

if ("‘uname -sr‘" =~ "SunOS 5"* && -f "$t") setenv TERMCAP "$t"

unset t

breaksw

case dtterm:

if ("‘tset -‘" == "") set term=xterm

breaksw

endsw

set noglob

eval ‘tset -s -mnetwork:?$term -munknown:?$term‘

18

unset noglob

if ("$oterm" == dtterm && "$term" == xterm) stty -tabs

unset oterm

This give a finishing touch to the set up, if you are using X windows.

And also tell X windows where are you in terms of display.

#

if ($TERM == xterm || $TERM == xterms || $TERM == sun-cmd) then

set noglob

if ($?TERMCAP) then

setenv TERMCAP "$TERMCAP""ti=\E7\E[?47h:te=\E[2J\E[?47l\E8:"

endif

unset noglob

if (! $?DISPLAY) \

setenv DISPLAY ‘who am i | sed -e ’s/.*(//’ -e ’s/[:.)].*$//’‘.berkeley.edu:0

endif

Tells people that finger you were are you logged in, but it needs to be

shaped up a bit to not erase the .plan file of anybody.

#set hostname = ‘hostname | sed -e ’s/\..*//’‘

echo Logged in on $hostname at ‘date "+%r %a %D"‘ | cat - .planfinale >.plan

print local reminder file if it exists:

if (-e .reminder && ! -z .reminder) source .reminder

std.logout

clear # was clearing over-quota messages

(cd ; \find . ’(’ -name ’*~’ -o -name ’.*~’ -o -name ’*.log’ -o \

-name ’*.dvi’ ’)’ -a -exec rm -f {} \; &) >& /dev/null

This next line is useful to tell people where did you last logged on, but it

it needs to be shapped up to not delete people’s .plan file.

(echo Logged out from $hostname at ‘date "+%r %a %D"‘ \

| cat - .planfinale >~/.plan &)

See Also

• Davey, Paul and Thyssen, Anthony. Csh Startup Summary.
http://www.cit.gu.edu.au/~anthony/info/shell/csh.startup.faq

19

• DuBois, Paul. Using csh and tcsh. Campbridge: O’Reilly and Associates, 1995.
See http://www.primate.wisc.edu/software/csh-tcsh-book/ for related resources.

• Joy, William. An Introduction to the C shell. Berkeley: Department of EECS.

• And the manual pages for csh and tcsh.

20

